A Priori Estimates for Solutions of Fully Nonlinear Equations with Convex Level Set

نویسندگان

  • LUIS A. CAFFARELLI
  • YU YUAN
چکیده

We derive an a priori C2,α estimate for solutions of the fully non-linear elliptic equation F(D2u) = 0, provided the level set Σ = {M | F(M) = 0} satisfies: (a) Σ∩ {M | TrM = t} is strictly convex for all constants t; (b) the angle between the identity matrix I and the normal Fij to Σ is strictly positive on the non-convex part of Σ. Moreover, we do not need any convexity assumption on F in the course of the proof for the two dimensional case, as the classical result indicates. .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convexity Estimates for Nonlinear Elliptic Equations and Application to Free Boundary Problems Estimations De Convexité Pour Des Équations Non-linéaires Elliptiques Et Application À Des Problèmes De Frontière Libre

– We prove the convexity of the set which is delimited by the free boundary corresponding to a quasi-linear elliptic equation in a 2-dimensional convex domain. The method relies on the study of the curvature of the level lines at the points which realize the maximum of the normal derivative at a given level, for analytic solutions of fully nonlinear elliptic equations. The method also provides ...

متن کامل

Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

Convex Solutions of Elliptic Differential Equations in Classical Differential Geometry

The issue of convexity is fundamental in the theory of partial differential equations. We discuss some recent progress of convexity estimates for solutions of nonlinear elliptic equations arising from some classical problems in differential geometry. We first review some works in the literature on the convexity of solutions of quasilinear elliptic equations in Rn. The study of geometric propert...

متن کامل

On the optimization of Dombi non-linear programming

Dombi family of t-norms includes a parametric family of continuous strict t-norms, whose members are increasing functions of the parameter. This family of t-norms covers the whole spectrum of t-norms when the parameter is changed from zero to infinity. In this paper, we study a nonlinear optimization problem in which the constraints are defined as fuzzy relational equations (FRE) with the Dombi...

متن کامل

A Priori Estimates of Positive Solutions for Sublinear Elliptic Equations

In this paper, a priori estimates of positive solutions for sublinear elliptic equations are given in terms of thicknesses of domains. To this end, a supersolution is constructed by a composite function of a solution to an ordinary differential equation and a distance function. The results work efficiently in the case where the domain is an exterior or an interior of a convex set.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1989